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Abstract:  The field of a small (in wavelengths) sound source in the vicinity of a plane, perfectly-
reflecting (pressure doubling) surface is investigated in terms of its radiation pattern and its 
response to the influence of the surface. The radiation impedance is computed as a function of the 
distance from the surface, and the power radiated by the source is determined from this impedance 
and the character of the driving mechanism of the source. For a constant-velocity source the radiated 
power doubles over the value in the unbounded medium as the source approaches the reflector. For a 
constant pressure source the radiated power approaches zero as the source approaches the reflector. 
These effects are appreciable only within about 0.25 wavelength of the reflector. 

Introduction 
We assume an isotropic, 

monochromatic, sound source at a height H 
above a plane, perfectly-reflecting (pressure 
doubling) ground surface and consider the 
sound pressure amplitude at a distant 
point, P.  Initially we assume that the 
distance from the ground point beneath the 
source to P is much greater than H; then 
the direct ray and reflected ray distances 
from the source may be considered equal 
from the standpoint of amplitude but not of 
phase.  At point P the direct and reflected 
rays will interfere; that is, they may be in 
phase, or 180° out of phase, or anywhere 
between, so that the field strength at that 
point may be twice the value it would have 
if there were no reflection, or zero, or 
anywhere between.  The extra distance 
traveled by the reflected ray to get to P 
causes the interference.  Figure 1 shows 
the geometry of the situation. 

 
Figure 1.  Direct and reflected ray path interference 
at distances much greater than the source height. 

 
Using the above assumption, computation 
of the sound field simply consists of the 
addition of the direct wave from the source 
to a distant point and the reflected wave to 
the same point, taking account of the phase 
delays in the propagation.  The far-field 
direct plus reflected sound pressure, 
relative to the unbounded (direct only) 
sound pressure is (2 + 2cosΦ)1/2, where the 
phase is Φ = (4π H/λ) sinθ, λ is the 
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wavelength and θ is the elevation angle of a 
ray from the origin to P. 

Further assuming that the source 
produces a constant volume velocity of 
sound, we compute the far-field radiation 
patterns produced by the system at various 
source heights above the ground.  Next, we 
consider the radiation fields produced by 
the source when it is excited at a number of 
frequencies simultaneously, and by a 
vertical array of sources excited in phase by 
a number of harmonically related 
frequencies. 

Finally, consideration of the power 
radiated by the source when it is very close 
to the reflecting surface leads to a detailed 
investigation of the radiation impedance 
seen by the source and the resultant effect 
on the radiated power. 

 
Source Heights Above One-quarter 
Wavelength 

At source heights above one-quarter 
wavelength the influence of the reflecting 
surface on the directly radiated amplitude 
of the source is small and is neglected for 
the time being. 

Figure 2 is a polar plot of the field 
strength at a distance from a source one 
wavelength above a hard ground. The 
curves show the strength of the field at an 
arbitrary but constant distance as a 
function of the angle above the horizon.  
Note that the strongest signal, twice the 
amplitude of the direct ray alone, is 
received at the angles 0°, 30°, and 90° 
above the horizontal.  Between these angles 
the field strength decreases to zero; at 
these null angles a distant receiver would 
hear no sound from our source.  Figures 3 
and 4 contain the polar diagrams of the 
radiation fields of sources 0.25, 0.5, 1.5 and 
2.0 wavelengths above the hard ground.  
The higher the source (in wavelengths) is 
above the ground, the more intricate is the 
lobe structure of the radiation pattern.  In 
every case, the peak amplitude in any lobe 

is twice the amplitude of the direct ray 
alone.  That means that in every case a 
listener situated on the horizon, or at an 
angle above the horizon corresponding with 
the peak of a lobe, will experience a sound 
level 6.02 dB greater than if the ground 
were perfectly absorbing; that is, if there 
were no reflection.  At any other angle the 
sound level will be less, and if the (squared) 
amplitude were averaged over all angles, 
the average level would be 3.01 dB above 
the value that would obtain if the source 
were in free space remote from any 
obstacle. 

 

 
Figure 2.  Sound pressure amplitude, normalized to 
that of an unbounded field, a large distance away 
from a source one wavelength above a hard ground. 

 
Figure 3.  Sound pressure amplitude in the far-field 
relative to the unbounded field, for sources 0.25 and 
0.5 wavelength above hard ground. 
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Figure 4.  Sound pressure amplitude in the far-field 
relative to the unbounded field, for sources 1.5 and 
2.0 wavelengths above hard ground. 

This last statement can be verified by 
integrating the time-mean-square sound 
pressure over all solid angles in the upper 
hemisphere, and normalizing by the same 
integral for the unbounded field.  Doing so, 
we obtain 2 + 2(λ/4πH)sin(4πH/λ). In the 
limit of large values of H/λ, this expression 
is identically equal to 2. 

We have, of course, assumed an 
idealized situation.  If the ground is 
partially absorbing, or is absorbing in 
patches or is otherwise inhomogeneous, the 
result will be different and would have to 
be calculated or measured for that specific 
situation.  In no case (except for some 
pathological cases), however, would the 
average level above the ground be more 
than 3.01 dB greater than that which 
would be obtained were the ground 
perfectly absorbing.  For very low 
frequencies it is safe to assume many 
surfaces to be perfectly reflecting. 

 

A Broadband Source 
The above arguments were made in the 

context of a monochromatic source.  For a 
broadband source at a fixed height the 
resultant field for each individual 
frequency would be that for the source 
height in wavelengths corresponding with 
that frequency.  The resultant sound 

pressure field is the superposition (that is, 
the linear addition) of the fields for every 
frequency component in the source.  In this 
more general case, the arguments and the 
conclusions in the paragraphs above 
regarding the average dB level and the dB 
level in the horizontal direction remain the 
same.  For a flat, broad-band spectrum 
covering at least one octave, the average 
level for elevated angles would be slightly 
less than 3.01 dB relative to free space, 
while at the horizon the maximum level 
would be 6.02 dB. 

Figure 5 is a polar plot showing the 
pattern produced by eight uniformly-spaced 
frequency components of equal amplitudes, 
emitted by a source at a fixed height. The 
source wave numbers (chosen somewhat 
arbitrarily) are kn = 8πn/H, with n ranging 
from 1 to 8 in unit steps.  Note the lobe on 
the horizon, and the lower responses at all 
other elevations.  The average sound level 
over the half-space above the ground is 
3.01 dB greater than the free space value. 
 

 
Figure 5.  Root-mean-square sound pressure, 
relative to that of an unbounded single source in 
the far-field, for a composite source emitting 8 
frequencies of equal amplitude.  The source wave 
numbers are chosen to equal kn = 8 n/H, where n 
ranges from 1 to 8 in unit steps. 
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Multiple Sources:  the Space/Frequency 
Equivalence 

Suppose one had a vertical array of 
eight sources, each emitting a distinct 
frequency corresponding to those of the 
previous example, and disposed so that 
their heights were Hn = H/n above the 
hard ground.  The resultant field at a 
distance then has the same amplitude 
pattern as that of the single source with 
height H = 0.25λ from Figure 3.  Because 
the field pattern depends solely on the 
product of wave number and height, one 
can realize the same pattern by a synthesis 
either in the frequency domain or in the 
spatial domain, as convenient.  The subject 
of pattern synthesis has been well 
developed in the contexts of sonar arrays 
and of antenna arrays.  A possible 
application for a multiple-frequency, 
multiple-source array would be an 
emergency warning system, where it is 
desired to concentrate the acoustical power 
in the horizontal direction. 

 
Source Height Less Than One-quarter 
Wavelength 

The above discussion assumed that the 
presence of the ground plane does not affect 
the behavior of the source.  For calculation 
of the radiation pattern, this is acceptable.  
But as the height decreases, the source 
begins to see an influence from the 
reflecting plane. 

Figure 6 illustrates the fields of single 
sources 0.1 and 0.02 wavelengths above the 
ground, respectively.  Note that at 0.1 
wavelength the depression at the zenith 
has almost disappeared, while at 0.02 
wavelength the pattern is essentially 
constant at all angles.  The integration of 
these patterns over the hemisphere results 
in a total radiated power greater than 
3.01 dB more than would be radiated into 
an unbounded space; in fact, approaching 
6.02 dB.  So far, the results of this study 
are consistent with the existing literature 

(Ingard 1957, Maloney 2003).  At this point 
the question of the conservation of energy 
arises, and it is clear that our simple 
assumptions about the physical situation 
must be revised for sources very close to 
the ground.  Implicit in our discussion so 
far, and of the authors cited above, is the 
assumption of a constant rms volume 
velocity through some sphere of small 
radius about the source.  This, in turn, 
requires that the driving energy supply to 
the source be able to (and constrained to) 
increase the radiated power as the source 
approaches the ground.  If the power 
supplied to the source is fixed, the total 
radiated power in the upper hemisphere 
cannot be more than that which would be 
radiated into the total sphere if there were 
no ground plane. 
 

 
Figure 6.  Sound pressure amplitude relative to 
the unbounded field, a large distance away 
from sources situated 0.1 wavelength and 0.02 
wavelength above a hard boundary. 

To examine the effect of ground 
proximity on the behavior of a sound source 
it is convenient to adopt the model in which 
an image source represents the effect of the 
ground, as shown in Figure 7.  The reaction 
on the source of the reflected wave is 
represented by the radiation impedance 
seen by the source.  The energy radiated by 
the source depends on this radiation 
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impedance and also on the internal energy 
source and the internal impedance of the 
source, be it mechanical or electrical.  The 
radiation impedance of a spherical source 
of a given radius is the ratio of the total 
force applied to its surface to the volume 
velocity at the surface, simple harmonic 
motion assumed.  Taking the origin of the 
coordinate system as the center of the 
source, the pressure radiated by the source 
toward the surface (or image) varies as 
exp(−jkr)/r , the reflected wave between 
the plane surface and the source as 
exp[−jk(2H−r)]/(2H−r), and the total 
pressure as the sum of these two waves. 
The velocity is proportional to the negative 
gradient of the pressure (Swenson 1953, 
Lindsay 1960). 
 

 
Figure 7.  Replacement of the ground plane by 

an image source. 

Choosing k = 1 (that is, wavelength=2π) 
and normalizing with respect to the 
intrinsic impedance of the unbounded 
medium, the impedance is: 
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In deriving this result, to simplify the 

mathematics, it was assumed that the 
pressure is uniform over the surface of a 
very small (in wavelengths) source.  It 
follows that the particle velocity is 
everywhere normal to the spherical surface 

and that the impedance depends only on 
the radius. 

The derivation is valid only for such 
small sources.  Clearly, in the vicinity of an 
obstacle, the pressure must vary to some 
extent over the surface of the spherical 
source.  This question has been 
investigated by a finite element analysis 
and it is found that for a source of radius 
0.05 wavelength, at a distance of 0.25 
wavelengths from the reflecting surface, 
the pressure amplitude on the surface 
decreases monotonically from front to back 
by 34 percent.  For the same source at 4.0 
wavelengths distance, the decrease is 5 
percent.  As both volume velocity and force 
are integrals over the same surface, the 
effect of this variation is minimized but not 
entirely eliminated.  We have therefore 
chosen to restrict our results to distances 
greater than 0.075 wavelengths. 

Figure 8 shows a plot of the radiation 
impedance seen by a source of radius 0.05 
wavelength at various distances H from the 
reflecting plane. 
 

 
Figure 8.  Acoustic radiation impedance of a 
pulsating sphere, radius 0.05 wavelength, 
relative to the characteristic impedance, as a 
function of height near a hard boundary. 

At distances greater than about 0.8 
wavelength, the impedance depends 
primarily on the radius r of the source; but 
as H decreases below 0.25 wavelength, the 
impedance increases rapidly. 
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The significance of this result is that at 
a large distance from the reflecting plane 
the source is not much affected by the 
reflector’s presence, while close to the plane 
the reflected wave interacts strongly with 
the source.  A source of acoustical energy 
must inherently have some internal 
structure or process; for example, an 
electromechanical transduction system that 
converts energy from an electrical or 
chemical process to a mechanical process 
which, in turn, drives the surface structure 
of the source.  If this internal process is 
linear the entire system can be represented 
for power considerations by a “circuit 
diagram”' as in electric network theory.  
Figure 9 represents such a diagram. 
 

 
Figure 9.  Equivalent circuit representing the 
source as a supply voltage with internal 
impedance, coupled to a radiation impedance 
representing the combined reaction of the air 
and boundary. 

The “supply” in the diagram is assumed 
to be a constant amplitude (voltage or force, 
say) supply that is independent of demand. 
Zint represents the entire internal 
mechanism of the source; this is justified by 
Thevenin's Theorem.  Zrad is the 
mechanical radiation impedance, the ratio 
of the total radial force exerted on the 
surface of the source to the volume velocity 
in the medium at the surface.  Zrad is 
obtained directly from Figure 8 as the area 
of the source is a factor in both the force 
and the volume velocity.  Both “supply” and 
Zint being independent of source position, 
the radiated power is the square of the rms 
volume velocity times the real part of Zrad 
(this is easily confirmed by dimensional 

analysis) and thus varies only with H, the 
distance of the source from the reflecting 
plane.  The power radiated by the source 
changes little as the source moves, until H 
decreases below about 0.25 wavelength, 
after which point it tends toward zero 
owing to the increase in the radiation 
impedance. 

The decrease is precipitous. As an 
example, consider a source of zero internal 
impedance, whose driving force, and 
therefore whose surface pressure, are 
constant with source-reflector separation. 
At 0.075 wavelength, the closest spacing 
deemed appropriate in view of the 
assumption of uniform pressure about the 
source, the radiated power is 0.793 of the 
power that would be radiated were the 
reflector absent.  If an internal impedance 
is arbitrarily assumed which is the 
conjugate of the radiation impedance in an 
unbounded medium, the result in Figure 10 
is obtained.  With a higher internal 
impedance the result will be even more 
dramatic. 
 

 
Figure 10.  Acoustic power radiated by a 
pulsating sphere above a hard boundary, 
relative to the unbounded radiation power.  
The sphere is driven by a constant (oscillating) 
supply force having fixed internal impedance.  
The internal impedance is chosen to be the 
complex conjugate of the unbounded radiation 
impedance. 
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